Sparse Computation with PEI

نویسندگان

  • Frédérique Voisin
  • Guy-René Perrin
چکیده

Pei formalism has been designed to reason and develop parallel programs in the context of data parallelism. In this paper, we focus on the use of Pei to transform a program involving dense matrices into a new program involving sparse matrices, using the example of the matrix-vector product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Compressive Sensing Recovery with Transform-based Sampling

We present a fast compression sensing (CS) reconstruction algorithm with computation complexity O(M2), where M denotes the length of a measurement vector Y = φX that is sampled from the signal X of length N via the sampling matrix φ with dimensionality M ×N . Our method has the following characteristics: (1) it is fast due to a closedform solution is derived; (2) it is accurate because signific...

متن کامل

Fast Binary Embedding via Circulant Downsampled Matrix - A Data-Independent Approach

Binary embedding of high-dimensional data aims to produce low-dimensional binary codes while preserving discriminative power. State-of-the-art methods often suffer from high computation and storage costs. We present a simple and fast embedding scheme by first downsampling N -dimensional data into M -dimensional data and then multiplying the data with an M × M circulant matrix. Our method requir...

متن کامل

Fabrication of Crosslinkable Hollow Fiber Membranes for Pervaporation Dehydration

Integrally-skinned asymmetric Polyetherimide/Poly (vinyl alcohol) (PEI/PVA) hollow fber membranes for pervaporation dehydration were fabricated by non-solvent induced phase inversion. PVA inside the PEI matrix could be crosslinked to provide membrane performance stability during long term operation. The effects of different PEI/PVA blend ratio, external coagulant type and...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Found. Comput. Sci.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1999